Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism.

نویسندگان

  • Amany A Abdin
  • Hala E Hamouda
چکیده

Current treatment options for parkinsonism as a neurodegenerative disease are limited and still mainly symptomatic and lack significant disease-modifying effect. Understanding its molecular pathology and finding the cause of dopaminergic cell loss will lead to exploring therapies that could prevent and cure the disease. Mitochondrial dysfunction was found to stimulate releasing of reactive oxygen species (ROS) with subsequent induction of apoptotic neuronal cell death. The aim of the present study was to throw the light on the role of coenzyme Q10 with or without L-dopa in an experimental model of parkinsonism induced by rotenone in rats. The present work showed that rotenone (2.5 mg/kg/day i.p. for 60 days) induced a model of parkinsonism (group II) resembling the basic findings in human characterized by bradykinesia and rigidity manifested as an increase in catalepsy score (detected after 20 days with bad prognosis after 60 days) with marked decrease in striatal dopamine levels. This model confirmed the implication of mitochondrial-apoptotic pathway in the pathogenesis of parkinsonism as there was a decrease in levels of striatal complex I activity and ATP as well as extreme overexpression of the antiapoptotic protein Bcl-2, and also exhibited the role of coenzyme Q10 where its plasma and striatal levels were found to be decreased in comparison to the normal control rats (group I). This proposed pathogenesis was evidenced by the significant correlation between catalepsy score and the neurochemical parameters obtained in the current work. The treated groups started to receive the drug(s) after 20 days from induction of parkinsonism and continued to complete for 60 days. Oral administration of Co Q10 in a low dose 200 mg/kg/day (group III) or a high dose 600 mg/kg/day (group IV), resulted in amelioration of the mitochondrial induced apoptosis by dose-dependent restoration of striatal complex I activity, ATP levels with temperate increase in expression of Bcl-2 as well as decrease in catalepsy score. Although both low and high doses of Co Q10 resulted in significant increase in its plasma and striatal levels, but only the high dose was shown to reach the recommended therapeutic levels. As a current replacement therapy, oral administration of levodopa 10 mg/kg/day (group V), caused symptomatic improvement in the form of reduction of catalepsy score with restoration of striatal dopamine levels, but it did not show any significant effects on either striatal complex I activity, ATP levels or the expression of Bcl-2, pointing to the lack of its disease-modifying role. On the other hand, its administration with high dose of coenzyme Q10 caused the most marked symptomatic improvement in catalepsy score when compared to its administration with low dose of coenzyme Q10, or when compared to either coenzyme Q10 high dose or L-dopa, respectively. Moreover, administration of high dose coenzyme Q10 with L-dopa provided a significant increase in striatal complex I activity, ATP levels and Bcl-2 expression in comparison to group administered coenzyme Q10 low dose with L-dopa, in addition to the significant restoration of striatal dopamine levels and both plasma and striatal Co Q10 levels. Regarding that L-dopa is viewed as a replacement therapy in parkinsonism, it could be concluded that addition of coenzyme Q10 in a high dose in early parkinson's disease could be recommended based on its proved disease-modifying role on several levels of the proposed mechanisms, including improvement of respiratory chain activity and intervention with neuronal apoptosis. A further research to investigate other apoptosis-targeted compounds will open a new era in the treatment of parkinsonism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beneficial Effects of Coenzyme Q10 in Streptozotocin-Induced Type I Diabetic Rats

The present investigation was undertaken to study the benefical effects of Coenzyme Q10 in streptozotocin (STZ)-induced type I diabetic rats. STZ-diabetes produced a significant increase in fasting glucose levels that was associated with decrease in serum insulin levels. STZ also produced hypercholesterolemia, hypertriglyceredemia, increase in lipid peroxidation and decrease in high density lip...

متن کامل

Synergestic effect of coenzyme Q10 and magnesium sulphate in reducing myocardial infarction caused by isoproterenol in rats

The objective of the study aims to evaluate the combined protective effects of coenzyme Q10 and magnesium sulphate on isoproterenol induced myocardial damage in rats. CoenzymeQ10 (50 mg/kg) and magnesium sulphate (10 mg/kg) were administered orally to wistar rats in individual or in combination for 30 days.  At the end of this period, rats were administered isoproterenol (85 mg/kg i.p.) intrape...

متن کامل

Research Paper: The Anti-Parkinsonism Effects of KATP Channel Blockade in the 6-Hydroxydopamine-Induced Animal Model: The Role of Oxidative Stress

Introduction: Studies suggest that ATP-sensitive potassium (KATP) channels are a potential pharmacotherapeutic target for neuroprotection in neurodegenerative diseases. The current study aimed at evaluating the effect of pretreatment with glibenclamide (Glib) and B vitamins supplement on the severity of behavioral symptoms in 6-hydroxydopamine (OHDA)-induced Parkinsonism. Also malondialdehyde (...

متن کامل

Evaluation of Coenzyme Q10 Addition and Storage Temperature on Some Physicochemical and Organoleptic Properties of Grape Juice

Todays, parallel to growing in acceptance of functional products, various additives are used to improve the characteristics of functional food products. The coenzyme Q10 is an essential component for energy conversion and production of adenosine triphosphate (ATP) in the membranes of all body cells and organelles, especially the inner mitochondrial membrane is found. Coenzyme Q10 plays a vital ...

متن کامل

Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease (PD).

A general complex I deficit has been hypothesized to contribute to neurodegeneration in Parkinson's disease (PD) and all toxins used to destroy dopaminergic neurons are complex I inhibitors. With MPTP or 6-OHdopamine, this hypothesis can not be tested since these toxins selectively accumulate in the dopaminergic neurons. However with rotenone, which penetrates all cells, the hypothesis can be t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 55 8  شماره 

صفحات  -

تاریخ انتشار 2008